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1. Mathematical framework

Here we construct mathematical models that describe resistance emergence

against various interventions. We use these models to derive distributions of

times until resistance emerges for interventions that have or lack early action

and multiple target sites. We find that the combined effect of early action and

a high multiplicity of target sites greatly reduces the rate at which resistance

emerges, relative to interventions that lack one or both of these features.

To begin, we posit four scenarios (summarized in Table S1): a prophy-

lactic intervention with a single effector (A), a prophylactic intervention with

multiple effectors (B), a therapeutic intervention with a single effector (C),

and a therapeutic intervention with multiple effectors (D). We ask how these

different interventions are expected to differ in the rates at which resistance

first appears.

To simplify the problem, we make six assumptions. First, by removing

the transmission advantage of partial resistance (see Figure 2), incomplete

resistance does not transmit when using prophylactic interventions (A and

B), but it does transmit when using therapeutic interventions (C and D).
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Second, epistatic interactions do not occur between resistance mutations.

Below we discuss how this assumption could be relaxed. Third, evolution

through the neutral force of genetic drift can be ignored. Fourth, selection

is extremely strong such that any new resistance capable of transmission

instantly becomes fixed in the population. Fifth, the probability of mutation

towards resistance is both independent of the current level of resistance and

equal for every replicative event, where a replicative event is defined as one

pathogen cell or virion becoming two. Sixth, the probability of multiple

resistance mutations occurring within a single replicative event is sufficiently

small that it can be ignored when other pathways to resistance exist. Note

that the qualitative ranking we give below would be unchanged if any of these

last four assumptions were violated.

Given these assumptions, we can construct a model that describes the

number of replicative events until resistance appears. Consider each replica-

tive event to be a toss of a weighted coin where the two possible outcomes

are 1) a mutation occurs that confers some degree of resistance, or 2) no

resistance is gained. If we knew that r mutational events were required to
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achieve complete resistance, and that the probability of one of these events

occurring in any particular replicative event was p, then the total number or

replicative events at which complete resistance first appears would be r plus

a negative binomially distributed random variable with parameters r and p.

It then follows from the mean of a negative binomial distribution that the

average number of replicative events until this evolutionary process results in

complete resistance to an intervention would be µ = r
p . Note that in some

cases, there may be two potential pathways to resistance. Complete resis-

tance might emerge during a single replicative event, or it might emerge after

an accumulation of a series of mutations that each confer partial resistance.

We use this model formulation to compare the four posited interventions

above.

For Intervention A, where transmission of incomplete resistance does not

occur, resistance will only emerge through one of the two pathways: a single

mutation that confers complete resistance. The probability of resistance oc-

curring in any single replicative event could then be described by pA = εβ,

where β is the probability that a single replicative event will result in a mu-
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tation that confers some level of resistance to a particular effector, and ε

is the fraction of those mutations that confer complete resistance to that

effector. Because Intervention A uses only a single effector, only a single mu-

tation is required for complete resistance (rA = 1). The number of replicative

events until resistance appears would then be the random variable W , where

W − 1 ∼ NB(1, εβ), and thus the average number or replicative events until

the emergence of resistance to Intervention A would be µA = 1
εβ .

For Intervention B, resistance must again emerge during a single replica-

tive event to spread through the pathogen population. However, in contrast

to Intervention A, N resistance mutations must simultaneously occur for re-

sistance to be achieved. The probability of resistance being acquired in a

single replicative event would therefore be reduced to pB = (εβ)N , while the

number of mutational events will remain the same, rB = 1. Thus the number

of replicative events until resistance appears would be the random variable X,

where X − 1 ∼ NB(1, (εβ)N), giving an average of µB = 1
(εβ)N . Note that for

any value of N greater than 1 and εβ less than 1, resistance to Intervention

A will appear after fewer events on average than resistance to Intervention
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B.

For Intervention C, where partial resistance can be transmitted, complete

resistance can be acquired through an accumulation of mutations that each

confers partial resistance. Using the same parameter definitions as above,

the probability of a partially resistant mutation occurring during a single

replicative event would be pC = (1 − ε)β, and multiple mutations would

be needed to confer complete resistance, rC = γ. The number of replica-

tive events until complete resistance is acquired through an accumulation

of partial resistance mutation would thus be the random variable U , where

U−γ ∼ NB(γ, (1−ε)β). A key point is that resistance could also be acquired

through a single mutation of large effect, identically to that described for In-

tervention A. Thus the number of replicative events until resistance emerges

to Intervention C would be Y = min(W,U). The dependence of W and U

on the parameters ε and γ implies that when ε << 1
1+γ , resistance will tend

to emerge through the accumulation of mutations each conferring partial re-

sistance, resulting in µC << µA. In contrast, when ε >> 1
1+γ , resistance will

tend to emerge through a single mutation that confers complete resistance,
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resulting in µC ≈ µA (Figure S1). Although we are unable to write a closed

form solution for µC , we are able to give it an upper bound. First, note that

µC must of course be at least as small as µA. Second, note that regardless

of whether a mutation confers partial resistance or complete resistance, In-

tervention C will have failed by the time γ of them have occurred. We can

therefore conclude that µC ≤ min(γβ ,
1
εβ ).

For Intervention D, where the transmission of partial resistance can occur,

and where there are N independent effectors, resistance to any single target

would appear after Y replicative events identically to that for Intervention

C. However, resistance would need to appear against each of N effectors

before full resistance was achieved. The number of replicative events until

resistance emerged against all of the effectors, would thus be the maximum

of N realizations of Y . It thus follows that on average Intervention C will

fail after fewer replicative events than Intervention D. Again, we are unable

to write a closed form solution for the average number of replicative events

until complete resistance is achieved µD, but we can generate an upper bound.

Noting that the maximal element of a set of non-negative numbers will be
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less than or equal to the sum of those numbers, and that the sum of multiple

negative binomial random variables with the parameters ri and p will itself

have a negative binomial random distribution with the parameters
∑
i

ri and

p, the mean of the maximum of N realizations of Y must be less than or

equal to N times the mean of Y . An upper bound of µD is therefore NµC .

This can be rewritten, µD ≤ min(Nγβ ,
N
εβ ).

We can quantify the evolutionary benefit of a prophylactic intervention

with multiple effectors by dividing the mean number of replicative events

until the failure of each intervention, by that of Intervention B, µB. This

analysis demonstrates that complete resistance against Intervention B would

take on the order of 1
(εβ)N−1 times as many replicative events to fail than any of

the other three interventions (Table S1). Given that β is presumably much

less than one, an intervention that employs both prophylaxis and multiple

effectors will drastically slow the evolution of resistance relative to an inter-

vention that lacks either or both of these features (Figure S1). We can thus

conclude that prophylaxis and multiple effectors have a synergistic benefit in

slowing the evolution of resistance to an intervention.
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Note that the ordering given above, µC ≤ µA ≤ µB and µC ≤ µD ≤ µB, is

based on the number of replicative events until resistance appears. However,

a second consideration is that the number of replicative events within a given

host will be much smaller for interventions that keep pathogen population

sizes small (Interventions A and B) than those that allow pathogen population

sizes to become large (Interventions C and D). This could have a tremendous

effect on the rate at which resistance evolves, because the mean replicative

events measured above must be divided by the number of replications per

infected host to determine the average number of hosts that can be infected

before an intervention fails. Pathogen population sizes can vary by orders

of magnitude between prophylactic and therapeutic interventions, and this

could in turn play out as a potentially enormous difference in the speed of

evolution.

A final point is that a resistant strain will only persist if it is able to find

hosts to infect. If different hosts respond to the same intervention in different

ways and a single effector provides protection, this mosaic of host responses

may prevent the spread of infection (Figure S2). Consider an intervention
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with N effectors that each confer protection in one of k ways. If hosts have

equal probability of responding in any of these k ways, then using the binomial

distribution, the probability that a pathogen fully resistant to intervention

in one host will also be fully resistant to intervention in the next host is

(1/k)N . If a fraction f of the population is receiving the intervention, this

strain will only persist when R0(1−f+f/(kN)) > 1, where R0 is the effective

reproductive number of the pathogen in a fully susceptible population. Thus

a pathogen resistant to intervention in one host would be unlikely to persist

in a host population if the coverage of the intervention f , the number of

effectors N , and the number of ways that hosts can respond k were large.

In constructing our model, we made six simplifying assumption. It is pos-

sible, however, to construct similar models that relax most of these assump-

tions. If selection for partial resistance were present but weaker against pro-

phylactic interventions than therapeutic interventions, our qualitative con-

clusion that µC ≤ µA ≤ µB and µC ≤ µD ≤ µB would still hold, but the

absolute benefit of prophylaxis would be reduced. In practice, this model

could be achieved by adding a pathway to complete resistance for prophy-
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lactic interventions through the accumulation of partial resistance (similar to

that for the therapeutic interventions). In this new model, an additional pa-

rameter ψ would describe the ability of selection to act on partial resistance

for prophylactic interventions relative to therapeutic interventions. The as-

sumption of no epistatic interactions could be relaxed by reformulating the

model, where the precise form of the new model would depend on the na-

ture of the epistatic interactions. For example, an ordered stepwise evolution

of resistance model could be modeled as the sum of several geometrically

distributed random variables, each with a potentially different value for the

parameter p that depends on the mutation rate for each step of this evolu-

tionary process. For other types of epistatic interactions, other model formu-

lations might be needed. Depending on the specific details of the epistatic

interactions, the failure rates of Interventions C and D could be dramatically

increased or reduced. Genetic drift could be added to the model by including

an extra pathway to resistance through neutral drift, although the probabil-

ity of following this pathway to resistance is likely to be very small. The

assumption that selection is extremely strong could be relaxed by explicitly
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modeling the spread of resistance mutants through the pathogen population,

or this process could be approximated by adding the expected fixation times

to the number of replicative events. It is difficult to imagine an easy way to

relax our final two assumptions that the probability of a mutation towards

resistance is constant for any replicative event and that the probability of

two resistance mutations occurring during the same replicative event is very

small. These two assumptions, however, have no effect on the qualitative

ordering that µC ≤ µA ≤ µB and µC ≤ µD ≤ µB. They also seem likely to

have little influence on the quantitative relationship between the interventions

when considering biologically reasonable parameter space.
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Figure S1: Mean replicative events until resistance appears for Interventions A (red),
B (black), C (blue), and D (purple). Plotted data is the mean of 20000 realizations for
each parameter set and model. Each column shows the effect of varying a different model
parameter. The bottom row shows the same data as the top row, magnified to highlight
the differences between Interventions A, C and D. Note that for all parameter sets the
average number of replicative events until resistance appears shows µC ≤ µA ≤ µB and
µC ≤ µD ≤ µB. The relationship between A and D depends on the parameters ε, γ, and N .
Where unspecified, β = 7 × 10−6, ε = 0.1, N = 3, γ = 5.
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2. Schematic of treatment mosaics
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Figure S2: Schematic showing the effect of treatment mosaics on pathogen resistance.
White boxes are untreated hosts. Filled and patterned boxes are treated hosts, with different
colors and patterns denoting different mechanisms of actions. Circles denote pathogens, with
the different colors and patterns indicating resistance to a particular mechanism of action.
Open circles are fully susceptible pathogens. Each line shows a chain of transmission that
ends when the pathogen infects a host with an effective mechanism of action. Note that the
overall levels of resistance and intervention are the same between the non-mosaic situation
(top) and the mosaic situation (bottom). The success of a fully susceptible pathogen is
therefore the same in both situations, but the resistant pathogens are less successful in the
presence of a mosaic. As a result, mosaics reduce the strength of selection for resistance to a
particular mechanism of action, because selection acts on the relative success of the different
virus strains.
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